No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
NVIDIA GTC San Jose 2017

S7261 - A New Approach to Active Learning by Query Synthesis Using Deep Generative Networks

Session Speakers
Session Description

We'll introduce a new active learning algorithm that is made practical using GPUs. Active learning concerns carefully choosing training data to minimize human labeling effort. In a nutshell, we apply deep generative models to synthesize informative "queries" that, when answered by a human labeler, allow the learner to learn faster. The learning is "active" in the sense that these questions are synthesized in an online manner adaptive to the current knowledge, thus minimizing the number of queries needed. Unlike traditional supervised machine training, our training is performed mostly on machine-synthesized data. To our knowledge, this is the first work that shows promising results in active learning by query synthesis.

Additional Session Information
Intermediate
Talk
Algorithms, Deep Learning and AI, Computer Vision and Machine Vision
25 minutes
Session Schedule