No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7481 - Big Image-Omics Data Analytics for Clinical Outcome Prediction

Session Speakers
Session Description

We'll introduce how to develop big image-omics data analytics algorithms with GPU computing tools for clinical outcome prediction from pathological images and cell profiling data of cancer patients. Recent technological innovations are enabling scientists to capture image-omics data at increasing speed and resolution, where the image-omics refers to both image data (pathology images or radiology images) and omics data (genomics, proteomics, or metabolomics) captured from the same patient. This is generating a deluge of heterogeneous data from different views. Thus, a compelling need exists to develop novel data analytics tools to foster and fuel the next generation of scientific discovery in image-omics data-related research. However, the major computational challenges are due to the unprecedented scale and complexity of heterogeneous image-omics data analytics. There is a critical need for large-scale modeling and mining strategies to bridge the gap and facilitate knowledge discovery from complex image-omics data. We'll introduce our recent work on developing novel deep learning methods to detect cells in the terapixel histopathological images with 10,000+ speedup and automatically discovering biomarkers for clinical outcome prediction.


Additional Session Information
All
Talk
AI in Healthcare Summit Accelerated Analytics Deep Learning and AI Healthcare and Life Sciences Medical Imaging
Healthcare & Life Sciences Higher Education / Research
25 minutes
Session Schedule