No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7436 - Boosting Visual Object Tracking Using Deep Features and GPU Implementations

Session Speakers
Session Description

We'll explain how to use Deep Features for enabling state-of-the-art results in visual object tracking. Visual object tracking is a difficult task in three respects, since (1) it needs to be performed in real-time, (2) the only available information about the object is an image region in the first frame, and (3) the internal object models needs to be updated in each frame. The use of Deep Features gives significant improvements regarding accuracy and robustness of the object tracker, but straightforward frame-wise updates of the object model become prohibitively slow for real-time performance. By introducing a compact representation of Deep Features, a smart updating mechanism, and exploiting systematically GPU implementations for feature extraction and optimization, real-time performance is achievable without jeopardizing tracking quality.


Additional Session Information
Advanced
Talk
Computer Vision and Machine Vision Deep Learning and AI Intelligent Video Analytics
Higher Education / Research
25 minutes
Session Schedule