No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ( )
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
Uppercase Letter
Lowercase Letter
Uppercase or Lowercase Letter
Number
Special Character
Password length of
or more and have
of the following:
Password 2 does not match password.
Add to My Interests
Remove from My Interests
Session Speakers
Session Description
We'll demonstrate how to accelerate dense linear algebra computations using CLBlast, an open-source OpenCL BLAS library providing optimized routines for a wide variety of devices. It is targeted at deep learning training and inference and thus provides a fast matrix-multiplication routine (GEMM) to accelerate the convolutional layers: the computational heart of all deep-learning frameworks (TensorFlow, Caffe, etc.). CLBlast has three main advantages over other BLAS libraries: 1) it can be explicitly tuned for specific matrix-sizes and hardware platforms, 2) it runs on less common devices (and it is fast), such as embedded and low-power GPUs, and 3) it can perform operations in half-precision FP16 format, saving precious bandwidth, time, and power.
Additional Session Information
Session Length :
25 minutes
!
We use cookies on this website to enhance your browsing experience and measure our audience.
Click here to find out more about how we use cookies. By continuing to use this website, or by closing this box, you are indicating your consent to our use of cookies.
Do Not Sell My Personal Information