No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7635 - Comparison of OpenACC and OpenMP4.5 Offloading: Speeding Up Simulations of Stellar Explosions

Session Speakers
Session Description

Learn about a case-study comparing OpenACC and OpenMP4.5 in the context of stellar explosions. Modeling supernovae requires multi-physics simulation codes to capture hydrodynamics, nuclear burning, gravitational forces, etc. As a nuclear detonation burns through the stellar material, it also increases the temperature. An equation of state (EOS) is then required to determine, say, the new pressure associated with this temperature increase. In fact, an EOS is needed after the thermodynamic conditions are changed by any physics routines. This means it is called many times throughout a simulation, requiring the need for a fast EOS implementation. Fortunately, these calculations can be performed independently during each time step, so the work can be offloaded to GPUs. Using the IBM/NVIDIA early test system (precursor to the upcoming Summit supercomputer) at Oak Ridge National Laboratory, we use a hybrid MPI+OpenMP (traditional CPU threads) driver program to offload work to GPUs. We'll compare the performance results as well as some of the currently available features of OpenACC and OpenMP4.5.


Additional Session Information
Intermediate
Talk
Astronomy and Astrophysics HPC and Supercomputing
Higher Education / Research
25 minutes
Session Schedule