No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7401 - Daino: A High-level Framework for Parallel and Efficient AMR on GPUs

Session Speakers
Session Description

We'll present a high-level framework for producing parallel and efficient adaptive mesh refinement code on GPU-accelerated supercomputers. AMR methods reduce computational requirements of problems by increasing resolution for only areas of interest. However, in practice, efficient AMR implementations are difficult, considering that the mesh hierarchy management must be optimized for the underlying hardware. Architecture complexity of GPUs can render efficient AMR to be particularity challenging in GPU-accelerated supercomputers. We'll present a compiler-based, high-level framework that can automatically transform serial uniform mesh code annotated by the user into parallel adaptive mesh code optimized for GPU-accelerated supercomputers. We show experimental results on three production applications. The speedups of code generated by our framework are comparable to hand-written AMR code while achieving good strong and weak scaling up to 3,640 GPUs.


Additional Session Information
Intermediate
Talk
HPC and Supercomputing Performance Optimization Programming Languages
Aerospace Higher Education / Research
25 minutes
Session Schedule