No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7378 - Deep Learning Approaches to Timeseries Data

Session Speakers
Session Description

Survey of successful deep learning (DL) applications within several domains featuring continuous streaming data [ time-series ]. Overview of what network architectures have yielded results and why these networks work. Network architectures reviewed included: RNNs (dynamic models and prediction), CNNs (for frequency transformed time series data, i.e., spectrograms), Autoencoders (anomaly detection and unsupervised data-structure visualization), and deep MLPs (sliding window event detection and classification). Example case studies: Industrial { Industrial Robotics, Automotive Telematics, Prognostics/Zero-Down-Time }, IoT { Event & Anomaly Detection, Information Leakage Attacks/Defenses }, Financial { Limit Books, Mortgage Risk Markets}.


Additional Session Information
Intermediate
Talk
Deep Learning and AI Intelligent Machines and IoT
25 minutes
Session Schedule