No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7562 - Deep Learning to Enable Real-Time Gravitational Wave and Multimessenger Astrophysics

Session Speakers
Session Description

The aLIGO Advanced Laser Interferometer Gravitational Observatory went on line last year and very rapidly produced data confirming Einstein's theory of gravitational waves. This discovery and the success of the detection device open the door for another dimension to be added to and combined with other electromagnetic detection devices (telescopes, radio telecopes, etc.) to dramatically increase the potential to understand the workings of deep space and astronomical phenomena at the origins of the universe. The project used data produced by the CACTUS HPC simulation to produce datasets that were used to train a DNN using the MXNet framework. The results were that the prediction accuracy increased over classical waveform analysis and reduced the number of processors from hundreds of CPUs to one GPU, where the prediction was achieved with a latency of 1 millisecond. The work was done on the BlueWaters supercomputer and at the Innovation Lab at NCSA. The reduction in the "pipeline size" (number of CPUs needed to make a detection) and the improved latency open up the potential for multi-messenger astrophysics, where an observation that is "heard" with the gravitational wave detector can be used to steer a detector in the visible or EM spectrum where to look.


Additional Session Information
All
Talk
Astronomy and Astrophysics Computational Physics Deep Learning and AI HPC and Supercomputing
Higher Education / Research
25 minutes
Session Schedule