No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7588 - Deep Watershed Transform for Instance Segmentation

Session Speakers
Session Description

Learn about the design, training, and analysis of a state-of-the-art, deep learning-based, instance-level segmentation pipeline enabled by NVIDIA DGX-1. Instance segmentation is the task of assigning semantic class labels to each pixel of an image (for example, car, person, etc.), as well as a coherent instance identifier such that every pixel belonging to the same object instance shares the same identifier. This has a wide array of applications, including object recognition and tracking, pose estimation, and scene understanding. In the context of autonomous driving, this will allow vehicles to accurately delineate multiple vehicles and pedestrians within an image. We'll present a simple yet powerful end-to-end convolutional neural network to tackle this task with state-of-the-art performance on the challenging Cityscapes Instance-Level Segmentation task. Our model consists of two independently trained individual deep neural networks with innovative training targets, followed by joint fine-tuning. The 30 million parameter network is trained on the new NVIDIA DGX-1 deep learning accelerator in approximately 30 hours. This is a 50% speedup compared to the NVIDIA Maxwell TITAN X, and is immeasurably faster than any CPU implementation.


Additional Session Information
Intermediate
Talk
Computer Vision and Machine Vision Deep Learning and AI
Automotive
25 minutes
Session Schedule