No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
NVIDIA GTC San Jose 2017

S7572 - Extending Mahout-Samsara Linear Algebra DSL to Support GPU Clusters

Session Speakers
Session Description

Data scientists love tools like R and Scikit-Learn, as they offer a convenient and familiar syntax for analysis tasks. However, these systems are limited to operating serially on datasets that can fit on a single node and don't allow for distributed execution. Mahout-Samsara is a linear algebra environment that offers both an easy-to-use Scala DSL and efficient distributed execution for linear algebra operations. Data scientists transitioning from R to Mahout can use the Samsara DSL for large-scale data sets with familiar R-like semantics. Machine learning and deep learning algorithms built with the Mahout-Samsara DSL are automatically parallelized and optimized to execute on distributed processing engines like Apache Spark and Apache Flink accelerated natively by CUDA, OpenCL, and OpenMP. We'll look at Mahout's distributed linear algebra capabilities and demonstrate an EigenFaces classification using Distributed SSVD executing on a GPU cluster. Machine learning practitioners will come away from this talk with a better understanding of how Samsara's linear algebra environment can help simplify developing highly scalable, CPU/GPU-accelerated machine learning and deep learning algorithms by focusing solely on the declarative specification of the algorithm without having to worry about the implementation details of a scalable distributed engine or having to learn to program with native math libraries.


Additional Session Information
Intermediate
Talk
Accelerated Analytics, Deep Learning and AI, Algorithms
Software
50 minutes
Session Schedule