No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7247 - High-Bandwidth 3D Image Compression to Boost Predictive Life Sciences

Session Speakers
Session Description

Modern microscopes easily produce large data volumes (terabyte datasets) at high rate (1,000 megabytes/s is no exception) that makes using them almost impossible. Once an acquisition is started, it typically has to be stopped again as the hard drives run full. We'll share how GPUs helped us bring this nightmare to an end. We'll introduce our open-source package, called sqeazy, that is capable of compressing microscopic data at faster speeds than a hard drive can spin. We show how GPUs provided a crucial boost in this endeavor and we'll share what technical challenges we overcame interfacing with modern video encoding libraries, like libavcodec of ffmpeg. Finally, we'll discuss how NVENC provides portable performance that helps scientists to observe living developing specimens over long time spans. This may be the foundation for modern predictive biology of the 21st century. Join us for a tour on how modern media technology straight from Hollywood can boost science!


Additional Session Information
Intermediate
Talk
Healthcare and Life Sciences Video and Image Processing
Healthcare & Life Sciences
25 minutes
Session Schedule