No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7413 - High-Performance Machine Learning for Weather Prediction Applications

Session Speakers
Session Description

Learn how statistical modeling is revolutionizing weather/climate prediction applications. Such models offer high fidelity in theory and are increasingly viewed as potential replacements to actual simulations. The main drawbacks of such models are the expensive number of flops and the overhead of the memory footprint due to computations resulting from the large dense covariance matrix, which makes it unrealistic in practice. By exploiting the low rank structure of the matrix and redesigning the underlying linear algebra in terms of batch operations, the fidelity of the model is not only maintained but also the corresponding performance achieved on GPUs is unprecedented. Low-rank matrix computations on GPUs boosts existing machine learning algorithms for weather prediction applications and opens new research directions.


Additional Session Information
Intermediate
Talk
Algorithms Performance Optimization
25 minutes
Session Schedule