No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7387 - Speeding Up Conjugate Gradient Solvers by 10x

Session Speakers
Session Description

On the path to exascale, high performance computing adapts wider and wider processors that need more parallelism. The energy required to move data and the available bandwidth pose significant challenges. See how an efficient implementation of iterative Krylov solvers can help deal with these issues. As an example, we the block conjugate gradient solver in QUDA, a library for lattice quantum chromodynamics. We demonstrate how an efficient implementation can overcome scaling issues and achieve a 10X speedup compared to a regular conjugate gradient solver.


Additional Session Information
Intermediate
Talk
Algorithms Computational Physics
Higher Education / Research
25 minutes
Session Schedule