No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7628 - The Future of GPU Data Management

Session Speakers
Session Description

Optimizing data movement between host and device memories is an important step when porting applications to GPUs. This is true for any programming model (CUDA, OpenACC, OpenMP 4+, etc.), and becomes even more challenging with complex aggregate data structures (arrays of structs with dynamically allocated array members). The CUDA and OpenACC APIs expose the separate host and device memories, requiring the programmer or compiler to explicitly manage the data allocation and coherence. The OpenACC committee is designing directives to extend this explicit data management for aggregate data structures. CUDA C++ has managed memory allocation routines and CUDA Fortran has the managed attribute for allocatable arrays, allowing the CUDA driver to manage data movement and coherence. Future NVIDIA GPUs will support true unified memory, with operating system and driver support for sharing the entire address space between the host and the GPU. We'll compare and contrast the current and future explicit memory movement with driver- and system-managed memory, and discuss how future developments will affect application development and performance.


Additional Session Information
Intermediate
Talk
HPC and Supercomputing Programming Languages
Software
25 minutes
Session Schedule