No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

S7527 - Unstructured Low-Order Finite-Element Earthquake Simulation Using OpenACC on Pascal GPUs

Session Speakers
Session Description

We'll show a method that decreases random memory accesses for GPUs by splitting up calculations properly. The target application is unstructured low-order finite element analysis, the core application for manufacturing analyses. To reduce the memory access cost, we apply the element-by-element method for matrix-vector multiplication in the analysis. This method conducts local matrix-vector computation for each element in parallel. Atomic and cache hardware in GPUs has improved and we can utilize the data locality in the element node connectivity by using atomic functions for addition of local results. We port codes to GPUs using OpenACC directives and attain high performance with low development costs. We'll also describe the performance on NVIDIA DGX-1, which contains eight Pascal GPUs.


Additional Session Information
Intermediate
Talk
Computational Fluid Dynamics Computational Physics Computer Aided Engineering HPC and Supercomputing Manufacturing Industries
Architecture / Engineering / Construction Higher Education / Research Manufacturing
25 minutes
Session Schedule