No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
This web page is not optimized for viewing on a mobile device. Visit this site in a desktop browser to access the full set of features.
2017 GTC San Jose

L7110 - Deep Reinforcement Learning Agents on Atari 2600 Games (Presented by NVIDIA Deep Learning Institute)

Session Speakers
Session Description

Learn the basic principles of reinforcement learning and develop a learning agent (Deep Learning Network -- CNN network trained with Q Learning) capable of playing classic Atari games. In this context, the neural network improves through in-game experience so as to choose the next best possible action by interpreting the screen's raw pixels along with the current score (action-value Q learning). At the beginning of the lab, students will be given an "intermediate" agent (trained for ~20 hours) and asked to continue the improvement/training process on NVIDIA-provided GPUs. At the end of the lab, students will be able to play against their best network and take home code that they can use to train agents in other Atari games. Prerequisites: Introductory knowledge of Lua and/or Python. This lab utilizes GPU resources in the cloud, you are required to bring your own laptop.


Additional Session Information
Beginner
Instructor-Led Lab
Computer Vision and Machine Vision Deep Learning and AI
General
2 hours
Session Schedule