No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Scheduled
Wait Listed
Personal Calendar
Speaking
Conference Event
Meeting
Interest
Schedule TBD
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
Please enter a maximum of {0} words.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
NVIDIA GTC San Jose 2017

S7831 - Accelerating High-Frequency Nonlinear Earthquake Simulations on OLCF Titan and NCSA Blue Waters

Session Speakers
Session Description

The highly nonlinear, multiscale dynamics of large earthquakes is a difficult physics problem that challenges HPC systems at extreme scale. This presentation will introduce our optimized CUDA implementation of the Drucker-Prager plasticity in AWP-ODC that utilize the GPU's memory bandwidth highly efficiently, which helps to scale to the full size of the Titan system. We demonstrate the dramatic reduction in the level of shaking in the Los Angeles basin by performing a nonlinear M 7.7 earthquake simulation on the southern San Andreas fault for frequencies up to 4 Hz using Blue Waters and Titan. Full realization of the projected gains in using nonlinear ground-motion simulations for controlling sources will improve the hazard estimates, which has a broad impact on risk-reduction and enhanced community resilience, especially for critical facilities such as large dams, nuclear power plants, and energy transportation networks.

Additional Session Information
All
Talk
HPC and Supercomputing
General, Higher Education / Research
25 minutes
Session Schedule